Temperature dependence of the resistivity of amorphous Mn thin films

F. Boakye *

Department of Physics, University of Science and Technology, Kumasi, Ghana

Received 30 September 1998; received in revised form 16 March 1999
A journal on the chemical, electronic, optical, and mechanical properties of glasses, amorphous semiconductors and metals, sol-gel materials, the liquid state of these solids, and the processes by which they are formed.

Founding Editor: Professor J.D. Mackenzie

Editor: J.H. Simmons
+1-352 335 7170

Technical Editorial Assistant: C. Simmons
+1-352 335 7170

Editorial Office: P.O. Box 13435, Gainesville, FL 32604, USA
For Express Mail Only: 4642 NW 12th Place, Gainesville, FL 32605, USA
Fax: +1-352 335 7170. E-mail: jncs@csi.com

Conference Editor: R.A. Weeks
Tel.: +1-423 856 7999. E-mail: E1E2E4@aol.com

Regional Editors
G.H. Frischat, Institut für Nichtmetallische Werkstoffe, Technische Universität Clausthal, D-36878 Clausthal-Zellerfeld, Germany
G.N. Greaves, Department of Physics, University of Wales, Penglais, Aberystwyth, Ceredigion S223 3BZ, UK
K. Hirao, Faculty of Engineering, Kyoto University, Sakyoku-ku, Kyoto, Japan
H. Hosono, Tokyo Institute of Technology, Materials and Structures Laboratory, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
K. Kelton, Department of Physics, Washington University, Box 1105, One Brookings Drive, St Louis, MO 63130, USA
J. Lucas, Laboratoire des Verres et Céramiques, Université de Rennes I, Ave. du Général Leclerc, Campus de Beaulieu, 35042 Rennes cedex, France

Advisory Editorial Board (for complete addresses, see page 2 of the preliminary pages of issue)

Australia
D.R. McKenzie, Sydney
Austria
J. Hafner, Vienna
Belgium
G.J. Adriaenssens, Heverlee-Leuven
Brazil
E.D. Zanotto, São Carlos
France
G. le Flem, Pessac
Germany
C. Rüssel, Jena
Italy
A. Montenero, Parma

Aims and Scope
The Journal of Non-Crystalline Solids publishes original research papers about oxide and non-oxide glasses, amorphous semiconductors, amorphous metals, glassy and amorphous films and coatings, glass-ceramics, glass composites, and processes by which these materials are produced. Papers about the liquid state are included so far as the properties of the liquids are relevant to the formation of non-crystalline solids.

Review papers are published occasionally. These may be solicited by the Editor or contributed. If contributed, a justification for the review and an outline of the paper should be sent to the Editor for preliminary review. 'Letters to the Editor' will be published within 3 months of acceptance if the author provides sufficient justification for fast track handling. In cases considered by the editor to justify fast track handling, a decision on acceptability for publication will be made within 2 weeks of receipt.

Abstracted/indexed in:
Ceramic Abstracts; Current Contents: Physical, Chemical and Earth Sciences; EI Compendex Plus; Engineering Index; INSPEC; Materials Information.

Subscription Information 1999
Volumes 243-260 of Journal of Non-Crystalline Solids (ISSN 0022-3093) are scheduled for publication. (Frequency: semimonthly.) Prices are available from the publishers upon request. Subscriptions are accepted on a prepaid basis only and are entered on a calendar-year basis. Issues are sent by SAL (surface air lifted) mail wherever this service is available. Airmail rates are available upon request.

Orders, claims and product enquiries: please contact the Customer Support Department at the Regional Sales Office nearest to you:

New York: Elsevier Science, PO Box 945, New York, NY 10159-0945, USA; phone: +1-212 633 3730 (toll free number for North American customers: 1-888 4ES INFO (437 4636); fax: +1-212 633 3680; e-mail: usinfo-f@elsevier.com
Amsterdam: Elsevier Science, PO Box 211, 1000 AE Amsterdam, The Netherlands; phone: +31-20 485 3737; fax: +31-20 485 3432; e-mail: nlinfo-f@elsevier.nl
Tokyo: Elsevier Science K.K., 9-15 Higashi-Azabu 1-chome, Minato-ku, Tokyo 106-0044, Japan; phone: +81-3 5561 5033; fax: +81-3 5561 5047; e-mail: info@elsevier.co.jp
Singapore: Elsevier Science, No. 1 Temasek Avenue, #17-01 Millenia Tower, Singapore 039192; phone: +65 434 3727; fax: +65 337 2230; e-mail: asiainfo@elsevier.com.sg
Rio de Janeiro: Elsevier Science, Rua Sete de Setembro 111/16 Andar, 20050-002 Centro, Rio de Janeiro - RJ, Brazil; phone: +55-21 509 5340; fax: +55-21 507 1991; e-mail: elsevier@campus.com.br [Note (Latin America): for orders, claims and help desk information, please contact the Regional Sales Office in New York as listed above.

Advertising Information
Advertising orders and enquiries can be sent to: USA and Canada: Elsevier Science Inc., Mr Tino de Carlo, 655 Avenue of the Americas, New York, NY 10010-5107, USA; phone: +1-212 633 3815; fax: +1-212 633 3820; e-mail: t.decarlo@elsevier.com. Japan: Elsevier Science K.K., Advertising Department, 9-15 Higashi-Azabu 1-chome, Minato-ku, Tokyo 106-0044, Japan; phone: +81-3 5561 5033; fax: +81-3 5561 5047. Europe and ROW: Rachel Gresle-Farthing, Elsevier Science Ltd., Advertising Department, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK; phone: +44-1865 843 565; fax: +44-1865 843 976; e-mail: r.gresle-farthing@elsevier.co.uk.
Temperature dependence of the resistivity of amorphous Mn thin films

F. Boakye *

Department of Physics, University of Science and Technology, Kumasi, Ghana
Received 30 September 1998; received in revised form 16 March 1999

Abstract

Resistivity measurements on an amorphous Mn thin film have been performed over the temperature range from 1.5 to 300 K. The films were prepared by thermal evaporation on glass substrates held at liquid-nitrogen temperature in an ambient pressure of 2×10^{-5} Torr. The amorphous nature of the film has been verified by high-voltage electron microscopy. The resistivities are large, typically of the order of 4.00 μΩ m or higher with small high-temperature slopes which are negative. At low temperatures ($T < 10 \text{ K}$) the resistivity obeys a T^2 law. These results can be understood in terms of a model based on temperature dependent structure factor as suggested by Nagel. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The crystal structure of α-Mn is extremely complicated. It has a bcc structure with 29 atoms per unit cell in two clusters, in a $Td^3 - 143m$ space group and is stable up to 700°C [1]. These atoms are distributed over four crystallographically equivalent sites: (i) two atoms at $(0 \ 0 \ 0) + \text{bcc}$ with point symmetry $43m$, (ii) eight atoms at $(x \ x \ x) + \text{bcc}$ with point symmetry $3m$, (iii) 24 atoms at $(x \ x \ z) + \text{bcc}$ with point symmetry m, and (iv) 24 atoms at $(x \ x \ x) + \text{bcc}$ with point symmetry m [2]. These sites are subsequently referred to as sites I, II, III and IV, respectively.

The resistivity–temperature behavior of α-Mn thin films is extremely anomalous [3]. The behavior typical of a highly disordered, near-glass-like metallic material is obtained at low substrate temperatures and in poor vacua. [4].

It has been reported [5] that the electrical properties of amorphous alloys compare more closely to liquid than to crystalline metals; the high degree of atomic disorder is evident in the magnitude of the resistivity, ρ typically 3.50 μΩ m, and its slow variation in temperature. Further, at high temperatures ($\partial \rho/\partial T$) is negative for some amorphous alloys, which is also characteristic of liquid rather than crystalline metals. At low temperatures almost all amorphous alloys show a region where ρ varies as $-\ln T$ [6,7]. High resolution resistivity measurements on a wide variety of amorphous alloys have been reported for the temperature range from 0.5 to 300 K by Cochrane and Strom-Olsen [8]. At low temperatures, below 20 K, the resistivity is found to be dominated by a $-\ln (T^2 + A^2)$ term with $A \sim 0.5 \text{ K}$.

The purpose of this communication is to point out that the resistivity–temperature behavior of

*Tel.: +233-51 60 299; fax: +233-51 60 313; e-mail: science@ust.gn.apc.org

0022-3093/99/S – see front matter © 1999 Elsevier Science B.V. All rights reserved.
Pii: S0022-3093(99)00298-7
amorphous Mn metal is analogous in certain respects to the behavior of some amorphous alloys [5].

2. Experimental details

The starting material was 99.98% electrolytic manganese. The flakes were first cleaned with 5% HCl in methanol to remove surface oxides and other contaminants. They were then dried and ground to fine powder and loaded into a molybdenum boat for vacuum deposition. The substrate was held in a brass mask whose temperature was kept at about 77 K. This was done by incorporating a liquid N\textsubscript{2} trap (made of copper tubing) to lie on top of the mask. The liquid N\textsubscript{2} as a coolant from a transport dewar was run through an inlet of the copper tube from time to time through the N\textsubscript{2} trap and consequently came out of an outlet. In this way, the substrate attained the liquid-nitrogen temperature. At such substrate temperatures, the unit was pumped down for about six hours until an ambient pressure of 2 \times 10^{-5} Torr was obtained as measured with an ion gauge fitted to the coating unit. The pressure was kept constant during evaporation at about 2 \times 10^{-5} Torr. The thickness of the film was monitored by a quartz crystal monitor. For actual film thickness measurement, an interferometer was used. The substrate temperature was measured with a copper-constantan thermocouple and the deposition rate was kept at 12 As-1. Resistivity measurements were made by the van der Pauw [9] four probe technique in a conventional He4 cryostat. Temperatures below 4.2 K were obtained by condensing liquid helium into the insert of the cryostat and pumping on it. Temperatures between 300 and 60 K were measured with a copper resistance thermometer. For temperatures below 60 K an Allen-Bradley sensing resistor was used. This has a resistance of about 200 \Omega at 25 K and rises to about 300 \Omega at 4.2 K. This sensor is therefore sensitive for temperatures below 4.2 K.

3. Results

The temperature variation of the resistivity of the amorphous film and that of the crystalline film studied by Boakye and Grassie [4] is presented in Fig. 1(a) and (b), respectively. It can be seen from the results that the temperature variation of the resistivity of the amorphous specimen is different from that of the crystalline sample which was deposited on a glass substrate held at 573 K in an ambient pressure of 10^{-6} Torr [4]. In the case of the amorphous film, there is first a gradual increase in resistivity as the temperature is dropped from 300 to about 70 K. The resistivity then increases sharply reaching an excess resistivity of 5.20 \mu\Omega m as compared with 0.80 \mu\Omega m for the crystalline sample. The slope of the \rho versus T curve of the amorphous sample is -0.42 \times 10^{-8} \mu\Omega m K-1 at room temperature whilst that of the crystalline sample is 2.05 \times 10^{-10} \mu\Omega m K-1. The electron diffraction patterns of the two specimens are presented in Plate 1(a) and (b). An analysis [4] of the diffraction rings in Plate 1(a) revealed the crystalline nature of the film with a lattice constant.
of 8.91 Å. A diffuse diffraction pattern is observed in Plate 1(b), revealing the amorphous nature of this specimen. Size effects are not observed in these films whose thicknesses are in the 3000–4000 Å range. This is because the mean free path of the conduction electrons, for resistivities of 1.40 μΩ m typical of the bulk α-Mn, is estimated [10] to be not more than 1.33 Å even if we assume that the five d electrons per atom have a high effective mass as is suggested by the low temperature specific heat [11] and the Hall effect measurements [10] and that the two s electrons are nearly free electron like, as is the case in the band structure calculation [12] for γ-Mn, the only band structure available for manganese.

4. Discussion

Ziman [13] has calculated the temperature dependence of resistivity using a formalism [5] primarily derived for simple liquid crystals. Evans et al. [14] have extended this to include liquid transition metals and Sinha [15] has suggested that this theory could be applied to metallic alloy glasses. In applying this theory to the glass, the temperature dependence is included as in the case of the liquid by taking into account the change in the shape of the structure factor S(k) as T is varied. Nagel [16] has suggested that in order to get an estimate of the importance of this effect on the resistivity, a calculation must be made starting from a microscopic model of the glass. In a liquid, S(k) will depend quite strongly on temperature and can be calculated using the Percus–Yevick equations [17].

A similar model has been used to describe the glass. However, in the solid, the change in S(k) should be calculated as due to the vibration of ions around their equilibrium positions.

For a transition-metal system like Mn, the resistivity can be expressed as [16]

$$\rho = \frac{30\pi^2 h}{me^2 k_F^2 E_F \Omega} \sin^2 \left[\eta^2 (E_F) \right] S(2k_F),$$

where k_F and E_F are the Fermi wave vector and energy, respectively and Ω is the atomic volume. $\eta^2 (E_F)$ is the d wave phase shift describing the scattering of the conduction electrons of energy E_F by the ion cores which each carry a muffin-tin potential. The temperature dependence of ρ is therefore determined by the temperature dependence of $S(2k_F)$. From the above expression Nagel [16] has obtained an expression for the resistivity given by

$$\rho = \frac{30\pi^2 h}{me^2 k_F^2 E_F \Omega} \sin^2 \left[\eta^2 (E_F) \right] \times \{ 1 + [S_0 (2k_F) - 1] \exp \{ -2[\omega(T) - \omega(0)] \} \},$$

where the phonon frequency $\omega(T)$ can be obtained from the Debye approximation.

The temperature coefficient of resistivity is given by Ref. [16]

$$\alpha = 1/\rho (\delta \rho / \delta T)$$

$$\approx 2[1 - S_T (2k_F)] / S_T (2k_F) |\delta \omega(T)/\delta T|,$$

where the smooth line is to act as a guide to the eye.
Table 1.
Results from amorphous Mn thin film

<table>
<thead>
<tr>
<th></th>
<th>Ambient pressure (Torr)</th>
<th>Substrate temperature T_s (K)</th>
<th>Deposition rate (Å s$^{-1}$)</th>
<th>Film thickness (Å)</th>
<th>ρ_{900} (μΩ m)</th>
<th>ρ_{9} (μΩ m)</th>
<th>Slope at 300 K (Ω m K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous sample</td>
<td>2×10^{-5}</td>
<td>77</td>
<td>12</td>
<td>3000</td>
<td>4.20</td>
<td>5.20</td>
<td>-0.42×10^{-8}</td>
</tr>
<tr>
<td>Crystalline sample</td>
<td>10^{-6}</td>
<td>573</td>
<td>7</td>
<td>3400</td>
<td>1.40</td>
<td>0.61</td>
<td>2.05×10^{-10}</td>
</tr>
<tr>
<td>Boakye and Grassie [4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equations (2) and (3) are theoretical deductions by Nagel [16]. Eq. (2) cannot be evaluated absolutely in view of the structure factor $S_0(2k_F)$ which has not been calculated and the exponent term which contains the Debye–Waller factor which is a function of T^2 at low temperatures. In spite of the above difficulties, a rough estimate can be made for the resistivity. If k_F and E_F for Mn are taken as 1.70×10^{10} m$^{-1}$ and 10.9 eV, respectively [18], and the effective mass is taken [18] as $m^* = 27$ m, then substitution of m^* for m in Eq. (2) gives an estimate of the resistivity at room temperature to be 5.00 μΩ m. This is on the assumption [16] that the scattering angle is extremely small [16]. Eq. (3) explains the negative slope of the coefficient of resistivity κ. In the Debye approximation, since $\text{d} \ln \rho / \text{d} k > 0$, κ will be negative if $S_F(2k_F) > 1$ even at high temperatures. The above Eqs. (2) and (3) are therefore deductions to assist in the explanation of the behavior of the resistivity–temperature curve of Fig. 1(a). These are not plotted in view of the reasons given above.

Accordingly, the present results may be interpreted by suggesting that: the random structure smears out the peak in the radial distribution function that coincides with the $2k_F$ dimension of the Fermi surface and hence leads to a decrease in the resistivity associated with the Debye–Waller factor. This causes the temperature dependence to change from a T^2 dependence at temperatures low in comparison to the Debye temperature to a linear T dependence at high temperatures. A plot of the resistivity ρ versus T^2 of the sample under investigation at low temperatures ($T < 10$ K) supports this hypothesis. This plot is presented in Fig. 2.

A summary of the results of measurements on the amorphous Mn thin film and the results of measurements on the crystalline sample by Boakye and Grassie [4] is given in Table 1 for purposes of comparison.

5. Conclusion

In conclusion, the amorphous metallic glass state of Mn thin films has resistivities that are high with high-temperature slopes that are negative. At low temperatures, the resistivity obeys a T^2 law. This interpretation is in agreement with the work of Nagel [16].

Acknowledgements

The author thanks Dr R.K. Nkum for fruitful discussion.

References

Submission of papers
Manuscripts (one original + two copies), should be sent to the Editor or any one of the regional editors. The address of the Editor is as follows:

Professor J.H. Simmons
Editor, Journal of Non-Crystalline Solids
P.O. Box 13435
Gainesville, FL 32604, USA
Tel. & Fax: +1 352 335 7170
E-mail: jnc@csi.com
For Express Mail Only: 4642 NW 12th Place
Gainesville, FL 32605, USA

Original material: On submission, authors are asked to confirm that the manuscript is not being simultaneously considered for publication elsewhere and that all authors have approved the manuscript and take full responsibility for its contents and so state in their letter of transmittal.

Types of contributions
Original research papers, reviews, letters to the editor and commentaries are welcome. They should contain an Abstract (of up to 200 words) and a Conclusions section which, particularly in the case of theoretical papers, translates the results into terms readily accessible to most readers.

Letters should be no longer than six double-spaced typed pages. They will be given priority in both the refereeing and production processes. The faster production schedule will preclude sending proofs of letters to authors.

Manuscript preparation
All manuscripts should be written in good English. The paper copies of the text should be prepared with double line spacing and wide margins, on numbered sheets. See notes opposite on electronic version of manuscripts.

Structure. Please adhere to the following order of presentation: Article title, Author(s), Affiliation(s), Abstract, PACS codes, Main text (Introduction; Experimental procedures or constraints on theory; Results; Discussion; Conclusion. Sections and sub-sections must be clearly numbered according to the Journal style), Acknowledgements, Appendices, Figures, References, Figure captions, Tables.

Corresponding author. The name, complete postal address, telephone and fax numbers and the e-mail address of the corresponding author should be given on the first page of the manuscript.

References. References to other work should be consecutively numbered in the text using square brackets and listed by number in the Reference list. Please refer to past issues of the Journal for examples.

Illustrations (figures)
Illustrations should also be submitted in triplicate: one master set and two sets of copies. The line drawings in the master set should be original laser printer or plotter output or drawn in black India ink, with careful lettering; lettering should 2 mm in height after reduction for printing. The photographs should be originals, with somewhat more contrast than is required in the printed version. The top edge should be indicated on the back. They should be unmounted unless part of a composite figure. Any scale markers should be inserted on the photgraph itself, not drawn below it. Colour plates. Figures may be published in colour, if this is judged essential by the Editor. The publisher and the author will each bear part of the extra costs involved. Further information is available from the publisher.

Classification codes/key words
Please supply one to four classification codes (PACS and/or MSC) that describe the content of your article in more detail.

After acceptance
Notification. You will be notified by the Editor of the journal of the acceptance of your article and invited to supply an electronic version of the accepted text, if this is not already available.

Copyright transfer. In the course of the production process you will be asked to transfer the copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

IMPORTANT: When page proofs of the accepted manuscript are made and sent to authors, this is in order to check that no undetected errors have arisen in the typesetting (or file conversion) process. Only printers’ errors may be corrected; no changes in, or additions to, the edited manuscript will be accepted. In the case of extended changes, the authors will be required to pay part of the extra costs involved.

Electronic manuscripts
The publisher welcomes the receipt of an electronic version of your accepted manuscript. If there is not already a copy of this (on diskette) with the journal editor at the time the manuscript is being refereed, you will be asked to send a file with the text of the accepted manuscript directly to the Publisher by e-mail or on diskette (allowed formats 3.5” or 5.25” MS-DOS, or 3.5” Macintosh) to the address given below. Please note that no deviations from the version accepted by the Editor of the journal are permissible without the prior and explicit approval by the Editor. Such changes should be clearly indicated on an accompanying printout of the file.

Author benefits
No page charges. Publishing in Journal of Non-Crystalline Solids is free.

Free offprints. The corresponding author will receive 50 offprints free of charge. An offprint order form will be supplied by the publisher for ordering any additional paid offprints.

Discount. Contributors to Elsevier Science journals are entitled to a 30% discount on all Elsevier Science books.

Further information (after acceptance)

Elsevier Science B.V.
Journal of Non-Crystalline Solids
Issue Management
P.O. Box 2759, 1000 CT Amsterdam
The Netherlands.
Fax: +31-20 485 2319.
E-mail: g.anderton@elsevier.nl

North-Holland, an imprint of Elsevier Science